Global Indirect Land Use Implications of U.S. Biofuel Policies: A Review of the Evidence*

Gbadebo (‘Debo) Oladosu
UT Dept. of Agricultural Economics
Fall 2010 Seminar Series
Sept. 8 2010

Acknowledgements:
Keith Kline, Robin Graham, Mark Downing,
Virginia Dale, Paul Leiby, Yetta Jager, Rocio
Uria-Martinez, Laurence Eaton

*This research was supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program and performed at Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The views in this presentation are those of the authors, who are also responsible for any errors or omissions.
Outline

- U.S. Biofuel Market & Policy Developments
- Ethanol-Related Issues
- Modeling the Indirect Effects of U.S. Ethanol Production
- Simulations of U.S. Biofuel Policy
- Analysis of the Empirical Corn Use for Ethanol Data
- Summary and Conclusions
Major Policy & Market Developments: Rapid Increase in Ethanol Use from 2001 - 2009

Corn Ethanol Production was about 10.5 billion gallons in 2009 (25% Annual Growth Rate between 2001 and 2009)
Major Policy & Market Developments: Markets and Infrastructure Limit Price-Based Substitution

- Ethanol & Gasoline Prices Move Together
- Limited U.S. Biofuel Infrastructure & Vehicle Market
- With small changes in price differentials and infrastructure constrains price-based substitution is limited

- Ethanol-Gasoline Price Gap Has Closed Since 2007
- Tax Credit Adjusted Ethanol to Gasoline Price Ratio Dropped Below 1 in 1999
- Ratio Was 75 to 107 Percent Between 1999-2009
Focus of U.S. Ethanol Issues Has Evolved Over Time

- Net Energy
 - Does Ethanol Production Consume More Energy Than It Contains?
 - Resolved ➔ No

- Energy Security Implications
 - Would Energy-Agriculture Link Enhance Supply Security?
 - Would Displaced Oil be Consumed Elsewhere Due to Lower Prices?

- Indirect Social and Environmental Global Impacts
 - Food vs. Fuel
 - Are Recent Agricultural Price Changes Due to Biofuels?
 - Net Sink or Source of GHGs
 - What are the GHG Implications of Indirect Land Use Change (ILUC)?
 - ILUC: Global Land Cover Changes Due to Biofuel
RFS2 Targets: Ethanol Categories Must Meet GHG Reduction Thresholds

- Corn Ethanol Meets GHG Threshold Without Indirect Land Use Change
Indirect Land Use Change Estimation: Complicated by Multi-Market, Local, National and Global Dimensions

- ILUC Cannot Be Observed – Must Be Estimated by Models
- Need to isolate indirect land use effects from other processes
- Model Structure, Assumptions, Policy Specifications and Data Crucial to Model Results
Simulations with A Modified GTAP Model: General Structure

- GTAP can be used for simulating biofuel policy
 - May require complementary models to fully model biofuel policy e.g. spatial land use change model

- Model Structure
 - Structure is Similar to Hertel et al (2010)
 - GTAP 6 Database with 2001 Base Year
 - Corn Ethanol By-Product Incorporated

- Main Differences:
 - Different Land Supply/Use Model
 - Different Parameterization of Biofuel Use
 - Mandate Policy Specification
Simulations with A Modified GTAP Model: Land Supply/Use Model

- **Land Supply Sub-Model**
 - Makes Unused Land Available for Agriculture

- **Supply & Use Model**
 - Linked Through Percentage Change in Agricultural Land

- **Generates an Upward Sloping Supply Curve for Agricultural Land**

```
Land Supply Sub-Model

σ = -0.1

Other Land Uses
Forest
Shrub/Grass Land
Agricultural Land

Shrub/Grass/Agric. Land

Land Use Sub-Model

σ = -0.5

Agricultural Land AEZ-i

Forestry Land
Crop + Pasture Land

Crop-1 Land (e.g. Coarse Grains)
... Crop-n Land

σ = -0.75

Cropland
Dairy Land
Ruminant Land
Non-Ruminant Land

Pasture Land

σ = -0.5

Land Supply Sub-Model

σ = -0.25
```
Simulations with A Modified GTAP Model: Policy Modeling Approach

- GTAP CES function Model of Ethanol-Petroleum products Substitution

\[\frac{Q_e}{Q} = A_e \left(\frac{P}{P_e} \right)^\sigma \]

- Share Parameter \(A_e \)
 - Technology Parameter - Usually Constant in CES Simulations
 - Recent U.S. Policies Represent Changes in \(A_e \)
 - Current Study Implements Policy Simulation as Changes in \(A_e \)
 - \(\sigma \) is set to 0.1 Consistent with U.S. Biofuel Market
Simulations with A Modified GTAP Model: Scenarios Based on 2001-2006 Data

<table>
<thead>
<tr>
<th></th>
<th>Case A Blending Mandate</th>
<th>Case B Output Mandate</th>
<th>Case C Yield-Adjusted Blending/Output Mandate</th>
<th>Case D Yield-Adjusted Blending Mandate & Parameter Changes</th>
<th>Case E Yield-Adjusted Output Mandate & Parameter Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Parameters</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>Ethanol Output</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X X X</td>
</tr>
<tr>
<td>Petroleum & Ethanol Consumption Tax</td>
<td>- E</td>
<td>- E</td>
<td>-</td>
<td>-</td>
<td>E E E</td>
</tr>
<tr>
<td>Petroleum & Ethanol Output Tax</td>
<td>- - E</td>
<td>- E</td>
<td>-</td>
<td>-</td>
<td>- - -</td>
</tr>
<tr>
<td>Change in Overall Household Tax to Income Ratio</td>
<td>- X</td>
<td>- X</td>
<td>-</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>Household Ethanol/Petroleum Elasticity of Substitution</td>
<td>- - -</td>
<td>- - -</td>
<td>-</td>
<td>X</td>
<td>X X -</td>
</tr>
<tr>
<td>Land Supply Transformation Elasticities</td>
<td>- - -</td>
<td>- - -</td>
<td>-</td>
<td>X</td>
<td>X X X</td>
</tr>
</tbody>
</table>
Simulations with A Modified GTAP Model: Case A – Blending Mandate

<table>
<thead>
<tr>
<th>Ethanol production and import change (%)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn ethanol output</td>
<td>171.07</td>
<td>18.83</td>
<td>0.01</td>
<td>0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>Corn ethanol import</td>
<td>179.98</td>
<td>-0.51</td>
<td>0.00</td>
<td>0.19</td>
<td>-0.16</td>
</tr>
<tr>
<td>Sugarcane ethanol output</td>
<td>173.40</td>
<td>0.39</td>
<td>2.36</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>Sugarcane ethanol import</td>
<td>182.47</td>
<td>0.14</td>
<td>0.51</td>
<td>0.06</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coarse grains output, export and land use change (%)</th>
<th>Coarse grains output</th>
<th>Coarse grains export</th>
<th>Coarse grains export share</th>
<th>Coarse grains ethanol</th>
<th>Coarse grains land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.69</td>
<td>-1.90</td>
<td>-6.30</td>
<td>171.07</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>-0.06</td>
<td>0.61</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.86</td>
<td>0.27</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.34</td>
<td>0.52</td>
<td>0.25</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land use change (%)</th>
<th>Coarse grains</th>
<th>Other grains</th>
<th>Forestry</th>
<th>Oil seeds</th>
<th>Other agriculture</th>
<th>Sugarcane</th>
<th>Dairy farms</th>
<th>Ruminant cattle</th>
<th>Non-Ruminants</th>
<th>Forest</th>
<th>Agricultural land</th>
<th>Shrub/Grass land</th>
<th>Other land</th>
<th>Oil import change (%)</th>
<th>Real GDP Change (Smillion)</th>
<th>Equivalent Variation (Smillion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.12</td>
<td>-0.80</td>
<td>-0.04</td>
<td>-0.80</td>
<td>-0.58</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.38</td>
<td>-0.38</td>
<td>-0.075</td>
<td>0.187</td>
<td>-0.425</td>
<td>-0.045</td>
<td>-3.80</td>
<td>-111</td>
<td>764</td>
</tr>
<tr>
<td></td>
<td>0.27</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.16</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.08</td>
<td>0.02</td>
<td>-0.08</td>
<td>0.030</td>
<td>0.038</td>
<td>-0.085</td>
<td>-0.001</td>
<td>-1.25</td>
<td>-4</td>
<td>-90</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>-0.12</td>
<td>0.00</td>
<td>0.03</td>
<td>-0.06</td>
<td>0.73</td>
<td>-0.03</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.002</td>
<td>0.038</td>
<td>-0.034</td>
<td>-0.005</td>
<td>0.90</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.004</td>
<td>0.009</td>
<td>-0.032</td>
<td>-0.004</td>
<td>0.25</td>
<td>516</td>
<td>1484</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.19</td>
<td>0.26</td>
<td>0.06</td>
<td>0.20</td>
<td>-0.02</td>
<td>0.02</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.004</td>
<td>0.009</td>
<td>-0.032</td>
<td>-0.005</td>
<td>-0.02</td>
<td>188</td>
<td>-191</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- All Sources of U.S. Ethanol Increased. Little Change in Rest of World Except for Canada and Brazil
- U.S. Coarse Grain Export Decline by 1.9%
- Coarse Grain Output 4.7% (Land: 3.12; Intensive Yield: 1.54%)
- U.S. Oil Imports: -3.8%; Increases in Most of Other Regions
- U.S. Real GDP: -$110 million
- U.S. Equiv. Var: +$764 million
- Economic Effects Mixed in Other Regions.
Simulations with A Modified GTAP Model: Case B1 – Output Mandate

<table>
<thead>
<tr>
<th>Ethanol production and import change (%)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn ethanol output</td>
<td>177.00</td>
<td>-9.96</td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Corn ethanol import</td>
<td>-94.66</td>
<td>-0.76</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.17</td>
</tr>
<tr>
<td>Sugarcane ethanol output</td>
<td>-22.36</td>
<td>0.04</td>
<td>-1.60</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Sugarcane ethanol import</td>
<td>-100.00</td>
<td>0.10</td>
<td>-0.08</td>
<td>0.16</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coarse grains output, export and land use change (%)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse grains output</td>
<td>4.87</td>
<td>0.21</td>
<td>0.36</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Coarse grains export</td>
<td>-1.93</td>
<td>0.02</td>
<td>1.09</td>
<td>0.37</td>
<td>0.91</td>
</tr>
<tr>
<td>Coarse grains export share</td>
<td>-6.48</td>
<td>-0.19</td>
<td>0.73</td>
<td>0.29</td>
<td>0.53</td>
</tr>
<tr>
<td>Coarse grains ethanol</td>
<td>177.00</td>
<td>-9.96</td>
<td>0.01</td>
<td>0.04</td>
<td>0.18</td>
</tr>
<tr>
<td>Coarse grains land</td>
<td>3.23</td>
<td>0.08</td>
<td>0.23</td>
<td>0.03</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land use change (%)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse grains</td>
<td>3.23</td>
<td>0.08</td>
<td>0.23</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td>Other grains</td>
<td>-0.81</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Forestry</td>
<td>-0.04</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil seeds</td>
<td>-0.83</td>
<td>0.14</td>
<td>0.14</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Other agriculture</td>
<td>-0.60</td>
<td>0.04</td>
<td>0.05</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>-0.34</td>
<td>-0.06</td>
<td>-0.54</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>Dairy farms</td>
<td>-0.34</td>
<td>-0.07</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>Ruminant cattle</td>
<td>-0.39</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>Non-Ruminants</td>
<td>-0.40</td>
<td>-0.08</td>
<td>0.02</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land-cover change (%)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>-0.079</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.005</td>
<td>-0.002</td>
</tr>
<tr>
<td>Agricultural land</td>
<td>0.198</td>
<td>0.029</td>
<td>0.014</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>Shrub/Grass land</td>
<td>-0.449</td>
<td>-0.082</td>
<td>-0.015</td>
<td>-0.027</td>
<td>-0.014</td>
</tr>
<tr>
<td>Other land</td>
<td>-0.048</td>
<td>-0.001</td>
<td>-0.006</td>
<td>-0.007</td>
<td>-0.001</td>
</tr>
<tr>
<td>Oil import change (%)</td>
<td>-1.00</td>
<td>-0.31</td>
<td>0.22</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real GDP Change (Smillion)</th>
<th>U.S.</th>
<th>Canada</th>
<th>Brazil</th>
<th>EU-27</th>
<th>Rest of World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Variation (Smillion)</td>
<td>-4705</td>
<td>-46</td>
<td>-1</td>
<td>338</td>
<td>-332</td>
</tr>
</tbody>
</table>

- Other Sources of U.S. Ethanol Reduced Due To Output Mandate
- Coarse Grain Export Loss More Pronounced
- Non-Land Results Differ Sharply From Case A
- U.S. Oil Imports: -1% vs. -3.8%; U.S. Real GDP & Equiv. Var. Both Decrease By Almost $5 billion
- Economic Effects Small But Almost All Negative in Other Regions.
Summary and Conclusions: Land Use Change Modeling Still Remains Inadequate

- Indirect Land Cover Loss Estimates Depend on Both Model Structure and Assumptions

- Many Crucial Land Use Change Drivers Remain Uncounted
Empirical Corn Data: Corn Use for Ethanol Quintupled and Exports Increased By 50% from 2001-2009

- Production and Export Surged as Corn Use for Ethanol Quintupled in Recent Years
- Corn Exports Reached Record Levels in 2007 Only for The Third Time in The Last Two Decades

- Harvested Total Cropland & Corn Land Has Changed Little Since 1990
- Most of the Recent Increase in Corn Land is Within the Grain Category
- 2007 Was an Outlier
Index Decomposition Analysis of Empirical Corn Data: Logarithmic Mean Divisia Index (LMDI I)

- **Index Decomposition Analysis**
- **Allocates Changes in an Aggregate Variable to Each Contributing Component If All Other Components Were Held Constant**
- **Especially Useful for Relationships of the Form:**
 \[y(x_1, x_2, \ldots, x_n) = x_1 \cdot x_2 \cdots x_n \]
- **Decomposition based on the total differential:**
 \[dy = \sum_{i=1}^{n} \prod_{j=1,j\neq i}^{n} x_j \, dx_i \]
- **Application to Discrete Data Leads to Different IDA Formulations**
 - Depending on How the Integral is Approximated
- **The Logarithmic Mean Divisia Index (LMDI I) Uses the Approximation:**
 \[\Delta y^D = \sum_{i=1}^{n} \left(\frac{y_{i+1} - y_{i-1}}{\ln \left(\frac{y_{i+1}}{y_{i-1}} \right)} \right) \ln \left(\frac{x_{i+1}}{x_{i-1}} \right) = \sum_{i=1}^{n} \Delta y \frac{g_{xi}}{g_y} \]
- **Similar to the GTAP Linearization (Percentage Change) Solution Approach**
Decomposition Analysis of Empirical Corn Use for Ethanol Data with LMDI I: Linkages in the Chain

Corn Production and Distribution Chain
- Corn Production
- Corn Stocks
 - Total Corn Supply
 - Net Corn Exports
 - Domestic Corn Uses
 - Food, Feed, Seed and Industrial Uses
 - Other Domestic Uses
 - Corn Use for Ethanol Production
 - Other Food, Feed, Seed and Industrial Use

Land Use Chain
- Harvested All Crops Land
- Harvested Grain & Oil Seeds Land
 - Harvested All Grains Land
 - Harvested Coarse Grains Land
 - Other Coarse Grains
 - Harvested Corn Area
 - Corn Production
 - Corn Yield

- Other Food, Feed, Seed and Industrial Use
- Other Domestic Uses

Decomposition Analysis of Empirical Corn Use for Ethanol Data with LMDI: Chain Relationship of Corn Use and Ethanol Distribution/Land Use Variables

\[Q_{ce} = \left(\frac{Q_{ce}}{Q_{ffsi}} \right) \left(\frac{Q_{ffsi}}{Q_{dom}} \right) \left(\frac{Q_{dom}}{Q_{prd+stc}} \right) Q_{prd} \]

\[Q_{prd} = Y_{\text{corn}} \frac{A_{\text{corn}}}{A_{cgrn}} \frac{A_{cgrn}}{A_{grn}} \frac{A_{grn}}{A_{grn+oilsd}} \frac{A_{grn+oilsd}}{A_{\text{all}}} A_{\text{all}} \]

where:
- \(Q_{ce} \) = Annual corn use for ethanol production (10^3 tons);
- \(Q_{ffsi} \) = Annual corn use for food, feed, seed and industrial purposes (10^3 tons)
- \(Q_{dom} \) = Annual total domestic corn use (10^3 tons)
- \(Q_{prd} \) = Annual total corn production (10^3 tons)
- \(Q_{prd+stc} \) = Annual corn production plus net stock withdrawal i.e. total supply (10^3 tons)
- \(Y_{\text{corn}} \) = Annual corn yield in (tons/ha)
- \(A_{\text{corn}} \) = Annual corn harvested area (ha)
- \(A_{cgrn} \) = Annual coarse grain harvested area (ha)
- \(A_{grn} \) = Annual all grain harvested area (ha)
- \(A_{grn+oilsd} \) = Annual all grain plus oilseed harvested area (ha)
- \(A_{\text{all}} \) = Annual total harvested cropland area (ha)
Decomposition Results of Corn Use for Ethanol Production: Domestic Adjustments Consistently Accounted for Most of the Change

- Net Contribution between 2001-2008
 - Domestic Reallocation: 85%, Production: 12%; Domestic Corn Use Share: 5%; Corn Stock Withdrawals: -2%;
Decomposition of Corn Use for Ethanol Production: Yield Contributions and Land Use Change Contributions Quite Variable

- Net Production Contribution between 2001-2008 (12%)
- Yield: 6%; Total Cropland: 2%; Others: 4%
Summary and Conclusions: Model Results Dependent on Many Factors

- Policy Alternatives in Current Study Produce Similar LUC Impacts
- Price-based Policies Produce Larger Welfare Losses
- Yield Change is Crucial in Estimating Land and Welfare Effects
- Increased Ethanol-Petroleum Substitution and Land Supply Elasticities Improve Welfare Effects
 - But Increase Land Conversion
 - Also Shift More of the Land Conversion to the U.S.
- Empirical Data Provides Little Support for Many Model Assumptions
 - Exports Continued to Increase to Record Levels in 2007
 - Domestic Re- Allocation Provided Bulk of Corn Use for Ethanol
 - Most of the increase in corn production due to yield change
Summary and Conclusions: Designing New Models of Land Use Change

• Current Models: Incorporate Some Drivers of LUC

• Crucial Missing Processes:
 • Global Actions on Domestic Changes
 • Linkage Between Landscape and Land Demand/Supply Sub-Models
 • Better Coupling of Land Use and Economic Sub-models
 • Local Land Use models

• Refine the Representation of Land Use and Biofuels in Economic Models
References

